39
Soil Microorganisms and Nematodes for Bioremediation and Amelioration
microalgae. Marine Pollution Bulletin, 57(1–5), 108–115. Pergamon. doi: 10.1016/j.
marpolbul.2007.10.006.
Yeates, G. W., & Bongers, T., (1999). Nematode diversity in agroecosystems. Invertebrate
Biodiversity as Bioindicators of Sustainable Landscapes, 113–135. Elsevier. doi: 10.1016/
b978-0-444-50019-9.50010-8.
Yin, K., Qiaoning, W., Min, L., & Lingxin, C., (2019). Microorganism remediation strategies
towards heavy metals. Chemical Engineering Journal, 360, 1553–1563. Elsevier. doi:
10.1016/j.cej.2018.10.226.
Yousaf, S., Muhammad, A., Thomas, G. R., Carrie, L. B., & Angela, S., (2011). Hydrocarbon
degradation, plant colonization and gene expression of alkane degradation genes by
endophytic Enterobacter ludwigii strains. Environmental Pollution, 159(10), 2675–2683.
Elsevier. doi: 10.1016/j.envpol.2011.05.031.
Yuan, M., Huaidong, H., Li, X., Ting, Z., Hui, L., Shubin, L., Peiyan, D., Zhihong, Y., &
Yuanxiao, J., (2014). Enhancement of Cd phytoextraction by two Amaranthus species with
endophytic Rahnella Sp. JN27. Chemosphere, 103, 99–104. Pergamon. doi: 10.1016/j.
chemosphere.2013.11.040.
Zahoor, M., Muhammad, I., Hazir, R., Muhammad, Q., Sahib, G. A., Muhammad, Q., &
Anwar, H., (2017). Alleviation of heavy metal toxicity and phytostimulation of Brassica
campestris L. by endophytic Mucor Sp. MHR-7. Ecotoxicology and Environmental Safety,
142, 139–149. Academic Press. doi: 10.1016/j.ecoenv.2017.04.005.
Zeraatkar, A. K., Hossein, A., Ahmad, F. T., Navid, R. M., & Mark, P. M., (2016). Potential
use of algae for heavy metal bioremediation, a critical review. Journal of Environmental
Management, 181, 817–831. Academic Press. doi: 10.1016/j.jenvman.2016.06.059.
Zhuang, X., Jian, C., Hojae, S., & Zhihui, B., (2007). New advances in plant growth-
promoting rhizobacteria for bioremediation. Environment International, 33(3), 406–413.
Pergamon. doi: 10.1016/j.envint.2006.12.005.